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82 M. LUCAS, ON THE DEVELOPMENT

Thus o
(1D, (1) 5 (1) 5 eeereererererenns (1) |=(1) @) (3)..-(L).

(1), M) +(2), (1) 5 coererrerrererrerens
(), (1) (1) +(3), cerererersrrerrenens
(1) verrrreerennnesenirens ) (L) + (L) +&e.

1V. Finally, instead of (1), (2), (3)..., we may write any
algebraical symbols ; which gives the solution of this question :
Express any product (1) (2) (3)...(L) as a determinant formed
according to the above laws, except that the terms of the
diagonal are not the series of natural numbers.

Example.
=z z, z, x, 2

x, 2z, v, x,
x, ©,2 xz,x
xz, 2z, =, 3z, x
Ty T, T, T,
‘We may call such determinants Smithian determinants.

ON THE DEVELOPMENT OF (rf_?)
IN A SERIES.

By M. Edouard Lucas.
MM. Laurent and Le Paige* have recently given the

development of w*= ( l_z—e") in a series of ascending powers

of 2. This can also be performed in the following simple
manner :

Let B, , be the coefficient of -1—22,—
of u*; we shall call B,,,, the ™ Bernoullian nuraber of order a.

B B
We have u=¢ ", u"=¢",

in the development

wherein we are to replace powers of B, and B, by second
suffizes and B, | by the n"™ Bernoullian number, so that

‘Bl.o=l’ B1,|=;’ ‘Bn,s=%1 ‘Bl,q"—"_'S"O' cee e

* Laurent, Nouvelles Annales de Mathématiques, 1875, t. X1v. p. 855.
Le Paige, Annales de la Société scientifigue de Bruxelles, 1876.
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We have t.hen, by definition,
B,,=[B/+ B/ +...+ B*Y,
on replacing [B,“T" by B, ,, and, more generally,
Brtptvtnyy=[Br+ Bu+ B, +... 7.

When « is a negative integer, we obtain, on changing
the mgn,

. u_¢=(l—ze) ;

whence, denoting by C,, the number of combinations of
a things taken p together, :

(=1
VY (p+2) (p+a)
But x[e=C, (a-1)"+C, ,(a—2)".t C, . ]
A= (z+a)™-C, , (®+a—1)"+C, ,(m+a— 2)" 4.+ (—1)=",
sothat B CAPAO s ).

, == (p+1) (p+2).(p+a)
As a particular case, )

ey
"lvf_p_*. 1°

By differentiation,

d a
z ¢(i: )_—.a(z-}- 1) ur— o™,

and, equating the coefficients of

123...(p—1)°

B,.»=(a=p) B, ,+apB, ;. ccccereeeee(2).
Thus, for a=1,
‘Ba,p Bt,’-l (P— ]) ‘Bl,l"
Put ﬂﬂ = B,’
p
and we have the symbolical formula
12.3...B,,, ,=p(p-1)...(p—a)B*(1 - B) (2— B)...(a— B)
........................ (3),

in which the powers of B are to be replaced by suffixes.
G2
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Replace p by p— 1, and we obtain
1.2.3...aB,

=(p=1)(p—2)er-(p—a1) B (1= B)...a—B) ....(4).

Multiply (3) by a—p+1, (4) by p(a+1), and add
taking account of the formula (2); we thus find ’

123...a(a+1)B,,,,
=(p-1)(p=2)..(p-a—1) B~ (1- B) (2~ B)...a— B)
x[p(a—p+1)B+p(a+1)(p—a-1)]
Simplifying this, we reproduce the formula (3), a being
changed into a+ 1. This formula, true for a=1, 2... is thus
generally true: it expresses the Bernoullian numbers of order
a as a linear function of a consecutive Bernoullian numbers

of the first order.
Paris, September, 1877.

ON THE SUCCESSIVE SUMMATIONS OF
1"+ 2" 4+ 8™ 42"
By M. Edouard Lucas.
Ler 8 . ()=1"+2"+38"+...+ 2",
Sp,- (w) = Sp—l,m (1) + Sp—l,n (2) + Sp—l,m (3) +eot Sp—!,- (x)’
and suppose that
_z(@+1) (x4 2)...(x+p-1)
Boo=1y 80= 1.2.3..p :
We have the symbolical formula

a:+B m+l_Bm+l
8,.=" 1'3+1 e (1),

in the development of which the m + 1 powers of B, are to

be replaced by second suffixes and B, | by the n** Bernoullian

number, with its proper sign. Differentiating the two sides

of the equation, we have, as a formula to calculate the

Bernoullian numbers, the identity ’
—(w+ 1+.Bl)m“—-(w+B,)Ml

(@+1)"= m+1 !

or, more generally,
Sf@+1)=f(x+1+ B)-f(z+B).
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To calculate S ,m» We form the table
lm’
1"+ 2™,
1" + 2™ 4 3%,
1™ 42" 4+ 3" +...+ 2",
and add the columns; the sum of the p* column is
(@=p+1)p" or (+1)p"~p™
Thus Ba=(@+1)8, =8 sy ceereererienees @);
or, symbolically expressed, v
B m=8"(x+1-8).

For example G, , =%ﬂ ,

s _z{z+1)'(z+2) 8 (w+l)(x+2)(a:+6a:+3)

t X 2l 12 ] s,s 60
In general
S8"(x+1-8)(x+2-8)...(x+p—8)
8= 123.p Yeveene (8).

In fact, changmg x into z+ 1 the first side of the
formula (3) is increased by

o (@+1)
and the second by % ’

8" (@+2—8)(@+3~8)....@+p—8),

that is, by the second side of (3), when  is replaced by z+1
and p by p- 1.
he formula (1) gives by summation
S = (Sl + Bl)m.ﬂ_ SloB)m‘
he m+1 !
and generally, after p summations,
S _ ( Igp + Bl)ml - S’OBIMI
P+lym m + 1 .
Changing p into p + 1, we deduce ,
S _(8+B+B)"™"-8(B +B)" &, B"™

P17

Hym ™ (m+l)(m+2) m+1
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and putting :
B, ,=[B,+B, +...B.°"]',
8 — (S; + 'Bn)m - Spoch - So"HBIMl
Mam T (m+1) (m+2) m+1 °
In general we should find in the same manner '
= (SP + 'B1)-“ — S:B ﬂmﬂ - S, N—|B q_|m-q-l
e (m+ 1) (m+2)...(m+q) (m+1)p...(m+g—1)
- SOMBV-QMH e — e Soﬂw—l'B!m‘ ( 4)
(m+1)...m+g-2) ™"  m+1 UV

Puttir}g 2=0, we obtain the development of §,, as a
function S, or of z.

Paris, September, 1877.

we have

CUBE ROOTS OF PRIMES TO 31 PLACES.
By 8. M. Drach, F.R.A.8.

THE 56-place values of the cube roots of 2 and 4 given
on p. 54, have reminded me that twelve years ago I cal-
culated the values of the cube roots of the primes from 2 to
127 to 33 places. The extraction of cube roots to a number
of decimaf places is so troublesome that it seems desirable
to publish these values, which are given in Table I. They
were obtained by the usual process of extracting cube roots,
and were verified by actual multiplication, the multiplication
beilrllg contracted throughout to 33 places.

he quantity e, when preceded by 31 ciphers, is the
amount by which the cube of the quantity in the second
column differed from the first column, that is to say, for
example, by cubing the quantity
1°25992 10498 94873 16476 72106 07278 399,

retaining 83 places throughout the process, I obtained as the
cabe
* 2 - 00000 00000 00000 00000 00000 00000 003,

and in general, cube of number in second column = first
column, + ¢ preceded by 31 ciphers.

The product of the root Ky itself gave me the root of
the square of the number, and Table II. contains the cube
roots of the squares of the primes from 2* to 127* found in
this manner.
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On”development in series.
Consider, in general, a function developable in a con-

vergent series proceeding according to positive powers of the
variables, and, for example, let

2 ‘ n
or under a symbolic form
F(x) ax
AT By O =

Denote by f(x) any other function whatever, and by % an
increment of «; we have the symbolic formula

ah, h ak h a
F(hf) = Ae f (wt+a ) 4+ Be (@) |, 0 hf("v"l")‘h),
in the development of which we are to replace
kKf° by f (=),
o by 5 2L @)

“1

. n@"f (@ + ak)
{akf(z + ah)}" by a k —T‘gz.— .

In fact, it is easy to see that this formula holds for
f(x) = G¢*, whatever G and % may be, and therefore alse
for any function whatever =Ge* of z.

We have, in particular, for = P2,

e -
I () = BV D _ VG

ey . . e -2 .
which is Stirling’s formula; and for ,:; =eP?, with

P, =2(1-2") B,, we have the formula
- = ePh h Phf (x
of (x) = ePW/ (=+h) | PAf( )’
a formula due to Boole.

Let e,_._ie_, =¢%*, E_ denoting an Eulerian number, then
9 f (x) - eEkj (x+h) + eEhf (:o—h),

and similarly for many other developments.

EpouArD Lucas.
Paris, November, 1877.
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axis of the elliptic cylinder so0 ‘as to cut off the greatest area,
to glide along the horizontal plane. Let C be the centre
of the ellipse, A the hinge, HP the beam pressing at P upon
the semi-cylinder. Let HC=a, 6 be the angle which the
normal at P makes with the major axis, 2r the length of
the beam to the plane, and the equations of motion are

d'd grsinf P b tanf
= K mk* " a/(1-¢'sin’d)’
dxz P
B cosd,
where
® b* sinf tanf a cosf a /(1 - ¢ 8in*6)

=2 V(-0 s00) T V(=5 sin8) = cosf  ?
dr _ a(l—é'sinf) |

df ~— cos’d 4/(1 —é*sin’6)’

by aid of this equation we immediately deduce the equation
o{ v8 viva from the equations of motion, and we obtain finally

from whence

f ‘1 df (mk®cos'd (1 —¢* sin*@)+m'a’ (1—¢")* sin"e}i
~ (2mgr) ] cos*d (1 —¢* 8in"0) (cosa — cosf) !
which may be reduced to an algebraical form by putting

cosf=u.
(To be continued.)

ON EULERIAN NUMBERS.
By M. Edouard Lucas.
1. IF we put
secx=14+a2'+ax'+ a2’ +... &c.,

we have, on multiplying the left-hand side of this equation
b)i cosz, and the right-hand side by the series for cosz, the
relation

— %ot g Pone @y 1 _
Tl TUl o)l Gyl

From this relation Mr. Glaistrer has deduced an expression for
a,, as a determinant of the n'® order (Messenger, vol. V1., p. 52).
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‘The Eulerian numbers are, in absolute value, given by

the formula
E =(-1)"(2n)!a,.
We thus have, changing  into ¢, the symbolic formula
2 R
Fres ¢
in the development of which the exponents of E are to be

replaced by suffixes, and E by unity. Getting rid of the
denominators, we find, for n positive, the recurring relation

(B+1)*"+(E=1)"=0 .cvrvrerrrnnncens (1),
leading to the determinant
E,=(-1)"|1 1, 0, 0, O,...| (nrows)*
1, 6 1, 0, 0,...
1, 15, 15, 1, O,...
1, 28, 70, 28, 1,...

This determinant is formed of lines of even rank and of
columns of uneven rank of the arithmetical triangle.
We have also the symbolic formula

2{-1"+3"=5"+7"+...4+ (4 - 1)"} = (4 + E)* - E";
and, in addition, the formule

1 1,1 1. (-1)a™E
FE TR TS Ay
° a"de . E_
fo ;w+em—i§n+i'

2. Eulerian numbers are integers and they are uneven.
Sherk has demonstrated that they end alternately in the
figures 1 and 5. These properties can be proved as.follows:

We deduce from the relation (1) for p prime the congruence

E_+E, _ +E, +..+E+E=0,(mod p);

-1
whence, denoting by 4, the sum of the first p Eulerian
numbers taken with their proper signs,

4,

, =0, (mod. p).

* This value of E,, as a determinant was given by Mr. Hammond in his paper
‘On ,the relation between Bernoulli's numbers and the Binomial coefficients,’
Proceedings of the London Mathematical Society, vol, V1., p, 18, (1875).—ED.
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The first values are given by the formule
E,+ E,=0,
E +6E + E =0,
E,+15E,+ 15E, + E,=0,

whence, starting from E,_,

‘EI+1 + Eo = 07
'E'"'s + 3E’+l + 3‘Eﬁ + EO = 0’
E, +10E, +5E, + 5E, 4+ 10E, + E,=0,

ooooooooooooooooooooooooooooooooooooooooooooooooo

(mod. p).

The comparison of these two systems of formule gives
successively

EI-H = En

Epa= By \ (mod. p).

‘We have, in general, e

E,,= B, 5y (mod. p),

whatever value the positive integer £ may have, and con-
sequently : :

Theorem. The residues of the Eulerian numbers, for any

rime modulus whatever, reproduce themselves periodically
in the same order, just as the residues of powers.

These considerations are applicable, in general, to the
differential coefficients of a rational fraction of ¢”, but under
certain conditions, as in the case of

$)
$ () .
‘When ¢ (1) is zero, as in the development of = the

theorem does not hold; the differential coefficients are no
longer integers and contain in the denominators an indefinite
series of prime numbers; it is so, for example, with the
Bernoullian numbers.

Paris, November, 1877.




M. E. LUCAS, A PASSAGE IN MERSENNE'S WORKS. 185

?ves the equations I. Conversely, from the equation I, IIL
ollows at once. -

Hence Thomson’s theorem, in the case of an infinitely
small circuit, stated in the form IV, is precisely equivalent to
the Helmholtz differential equations fI, and stated in the
integral form III, it is precisely equivalent to the Cauchy
integrals I.

University, Melbourne,
September 26, 1877,

ON THE INTERPRETATION OF A PASSAGE
IN MERSENNE’S WORKS.
By M. Edouard Lucas.

M. GenoccHI has recently called attention, apropos™of
a paper of mine, to a passage in Mersenne’s Works, from
which it results that numbers of the form 2"—1 are com-
posite, except when n has the values

2,3, 5,1, 13, 17, 19, 31, 67, 127, 257, ..,.

I may observe that, in order to verify by known methods
the last assertion of Mersenne, viz. that 2*"—1 is a prime,
the whole population of the gloi)e, calculating simultaneously,
would require more than a million of millions of millions of
centuries.

Numbers of the form 2°+1 can only be prime, with
the sign — if the exponent be prime, and with the sign +
if the exponent isa power of 2; and it is known that the

rimes of the latter form are those for which the circum-
E:rence of a circle may be geometrically divided into equal
parts. 'We have, then, to consider the three distinct classes

A=2""_1 B=2"""_1, C=2"+1.
I may add that Fermat has given the decomposition
2" — 1=223 x 616318177,
and Plana has given
2% —1=13367 x 164511353.

By means of a new method M. Landry has lately found
the decompositions '

2% — 1=431 x 9719 x 2099863,

2 — 1 =2351 x 4513 x 13264529,
2% — 1=6361 x 69431 x 20394401,
2% —1=179951 x 3203431780337,
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and I have myself remarked that
2 — 1 =0 (mod. 439),

and proved the theorem :—

If the numbers 4¢ + 3 and 8¢ + 7 are prime, then

2**—1=0(mod. 8¢+17);

and therefore the numbers ‘

9® 1, 21, 2"y 9", 9™_1 ®_1, .,
are not prime.

En résumé all these results seem to indicate that Mersenne
was in possession of arithmetical methods that are now lost.

I shall now indicate a new method of verification for each
of the forms 4 and B.

1°. Numbers of the form 4 =2*—1,
Form the series of numbers
1, 8, 7, 47, 2207, 4870847, 27325150497407, ...,

in which each is equal to the square of the preceding one
diminished by 2, an% retain the residues to modulus 4; the
calculation of the residues is easily performed by successive
subtractions, the first ten multiples of 4 having been first
calculated. ’

If no one of the 4+ 3 first residues is equal to zero, the
number 4 is composite ; if the first zero is comprised within
the limits 2¢ + 1 and 4¢ + 3, the number 4 is prime; in fact,
if @y <2g+ 1, denotes the position of the first zero residue,
the divisors of A belong to the form 2°4 + 1, and to the quad-
ratic form «* — 23",

Example. For A=2"-1, we have the residues
1, 3, 7, 417, 48, 16, 0 (mod. 127),
whence the number is prime.
For 4=2"—-1 we form the residues
1, 3, 7, 47, 160, 1034, 620, — 438, — 576, 160;
and 4, =2047, is not prime and the residues reproduce them-
selves periodically. Thus 2" —1 is composite,
2" —1=23 x 89.
2°. Numbers of the form B=2*—1,
Form the series of numbers 7,
1, -1, 7, 17, 5983, ...,
n-1
such that r,,=2rr=38,
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and take the series of residues to the modulus B. The
number B is prime if the first zero residue has a position
comprised between 2¢ and 4¢+1; it is composite if no one
of tEe 4g + 1 first residues is equal to zero; and, if a, = 2¢,
is the position of the first zero residue, the divisors of B
belong to the linear form 2#% + 1, combined with those of the
quadratic divisors of the form 22" — 3"
Thus r,= 5983 =193 x 31 ; therefore 2°— 1 is prime.

MATHEMATICAL NOTES.

A Problem in Partitions.

Take for instance 6 letters; a partition into 3’s, such as
abc, def contains the 6 duads ab, ac, b, de,df, ef. A partition
into 2’s such as ab.cd.¢f contains the 3 duads ab, cd, of.
Hence if there are a partitions into 3’s, and B partitions
into 2’s, and these contain all the duads each once and only
once, 6a+ 38 =15, or 2a + B=5. The solutions of this last
equation are (@=0, 8=5), (a=1, 8=38), (a=2, B=1),
and it is at once seen that the first two sets give solutions of
the partition problem, but that the third set gives no solution ;
thus we have

a=0, 8=5 a=1, 8=3

ab.cd.ef | abc.def

ac.be.ef | ad.be.cf
ad.bf . ce ae.bf .cd
ae.bd.cf | af.bd.ce.
af . be.de

Similarly for any other number of letters, for instance 15
if we have a partitions into 5’s and 8 partitions into 3’s, then
if these contain all the duads 4a+ 28 =14, or what 1s the
same 2a 4+ 8="173 if a=0, 8= 1, the partition problem can be
solved (this is in fact the problem of the 15 scﬁool—girls), but
can it be-solved for any other values (and if so which values)
of @, B? Or again for 30 letters; if we have a partitiong
into 5’s, B partitions into 3’s and ¢ partitions into 2’s; then
if these contain all the duads 4a+28+y=29; and the
question is for what values of a, 8, «, does the partition-
problem admit of solution.

The- question is important from its connexion with the
theory of groups, but it seems to be a very difficult one.
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therefore
D= [cosa — cos(a + nb)]" —[cos (a — &) — cos {a + (n — 1) B}]"
- 2 (1 - cosnb) :
(V). In like manner
| sina, sin (@ + 3)...sin {a + (n — 1) 3} | -
- _ [sina - sin (a + »b)]"—[sin (a — b)—sin {a + (n—1) B} T*

2 (1 — cosnb)
3. We are .also able to solve the partial differential
equation :
.D, D, ..D,. |u=0,
Dn’ 'DU “Dw-l
D, D,...D,
where =Ed .

Viz. the solution of this equation is the sum of the solutions
of the different equations
du du du

— — .-‘__..=
dx,+adw,+'"+a = 0,

where a"=1. This is of Lagrange’s form, and
u=f(2,— az,, ,— 0, ..x, - a"'z).
Thus the solution of the given equation is
u=23f(x, - ax,, x,~ 'z, ...z, — " 'x,),
when the summation extends to all values of a being roots
of the equation 2" —1=0. :

ON THE RELATIONS BETWEEN THE ANGLES
OF FIVE CIRCLES IN A PLANE OR OF
SIX SPHERES IN SPACE

By Edouard Lucas.

THE definition of the potency of a point with respect
to a circle or a sphere, its expression in the system of
Cartesian coordinates, and the most elementary properties of
determinants, enable us to arrive immediately at a knowledge
of the most general relations concerning the distances of
points, angles, straight lines, and circles in a plane, and the
angles of planes and spheres in space. The relations of the
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distances and angles are included, to a great extent, in
the following fundamental proposition.

The potencies of any point with respect to five circles in
a plane or with respect to six spheres in space are connected
by a linear and homogeneous equation in which the sum of
the coefficients is zero.

Let zi=2'+y —2ax —2by + c;,
the first member of the equation of a circle in rectangular
coordinates; we know that ¢, and «; represent respectively
the potency of the origin and of any point M, coordinates
x, y, with respect to this circle. Eliminating x, y and 2" + ¥*
between the four equations obtained with ¢=1,2, 3, 4, we
have the identity®

“'n "n bn 1 cn au b:’ 1
Ty ay b, 1 — | % % b, 1
x, a, b, 1 €y G5 by 1
Ty ay b, 1 Co @y by 1

Denote by I, m, n, p the coefficients of z,, z,, #,, z, in the
development of the determinant forming the first member, and
by g the value of the second member, we have then

le, + mz, + nx,+ p2e,— ¢=0 ..... :......(l),
but if we replace x,, a,, x,, , by unity or by the same
number the first determinant vanishes, and we have
I4mAn+p=0.ccceriernnneenennes(2)
We thus obtain the following principle :

The potencies of a point with respect to four circles ina

lane are connected by a linear equation, not homogeneous,
in which the sum of the coefficients of the powers is zero.

If the four circles are orthogonal to a fifth, the centre of
the latter has the same potency with respect to the four
circles, whence ¢ =0, and consequently :

The potencies of a point with respect to four circles,
orthogonal to the same circle, are connected by a linear and
homogeneous equation in which the sum of the coefficients
is zero.

To prove the fundamental theorem it suffices to consider
a fifth circle, and we have, for example,

lz +m'e +n'z,+pe,— ¢ =0.ceeeeeenens (3),
U +m' 47 +p =0.eeneeennn(4).

* Nouvelles Annales de Mathématignes, Second Series. t. Xv. p. 205.
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Multiplying the two members of the equalities (1) and (2)
by ¢, those of the equalities (3) and (4) by ¢, and subtracting,
we have the demonstration of the theorem.

We define the mutual potency of two circles radii »; and 7;,
centres O; and 0;, distance between the centres dj, to be 4,
where '

2raidy=ri+r = dift iiiniinnnnn(5);
when the circles cut, 4,; represents the cosine of the angle
of the two circles; we have also
d.'.‘ =0, Aa‘a‘ =1, A-‘i = Ai‘"
Now suppose the point M to be at the centre O; of a
«circle of radius r;; the potency of this point with respect to
the circle of centre O, is
w;=d;'—rd,

.

viz. L mi=rt—-2rmd ... RN (K
but, by the fundamental theorem, .

l:L‘, + mz, +nx, + pr, + 9T, = 0,

Il +m +n 4p +q =0;
and consequently comparing the three preceding formule,

lrpiA;+ mr A+ nrp A+ prod g+ qrrid;=0.

Making ; equal to 1, 2, 3, 4, 5, in the preceding equation we
obtain five equations, which give, by the elimination of
l, m, n, p, g, the determinant

rlrlAll, rlrﬂAl” rlrﬂAll’ rlrIAl" rlrﬁAlﬁ
rr Ay, vl vl rrd,, rrd

) "2 28) g ) "9 5%
r Ay 1Ay Tl T Ay T Ay | =000 (7).

81) 33 “8'8
rlrlA(l’ r‘r'Ali, r‘rlA“’ rlrIA“, rlrbA“
rsrlAbl’ raraAm’ ruraAav rsrdAui rsrsAw
If no one of the radii is zero, we can suppress all the radii;
if one of them »; is zero, we can replace rr;4; by &';—r}',
and r; 4, by 0; if two radii »; and ; are zero, we replace
rx; by d*;. Thus, when the system of two circles is formed
of a circle and a point, we replace in the relation (7) the
mutual potency of the two circles by the potency of the point
with regard to the circle; and if the system is formed of
two points, we replace the mutual potency by the square of
their distance.

If the radius #; of one of the circles increases indefinitely,

and if the circle becomes a straight line, divide by »; and

812
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replace 4, by % or by the cosine of the angle between the

straight line and the circle, when the straight line and circle
cut one another. Thus, when the system of two circles is
formed of a circle and a straight line, we replace in the
relation (7) the mutual potency by the quotient of the dis-
tance of the centre to the straight line by the radius; we see
also that when the system of two circles is formed of a point
and a straight line, we replace the mutual potency by the
distance of the point from the straight line.

In the system formed by a circle and a straight line which
Easses to an indefinite distance, we replace the mutual potency

y the reciprocal of the radius.

In the system formed by a point and the straight line at
infinity, we replace the mutual potency by unity; in the
system formed by two straight lines we replace the mutual
potency by the cosine of their angle; if one of the straight
lines passes to an infinite distance, we replace the mutual
potency by zero.

Consequently, applying, as has been said, the notion of the
mutual potency of the points, of the straight lines, of the
circles and of the straight lines at infinity, we have the follow-
ing theorem: .

The determinant formed by the mutual potencies of an
points, straight lines or circles in a plane, whose number is
at least equal to dﬁve, is identically zero.

We have evidently the same theorem in space for any six
points, planes or spheres, or for any one or a greater number
of elements.

The following are some corollaries from this important
theorem :

1. If the circle O, is a point on the circle O, we have
the formula

. x.
Am Am Am Au’ ,_.!
1
%y
Am An’ Am Aw r
s
A, A, A, A, 5
81) T3y gy gy r“ =0.
8
Au’ Au’ Aa’ Au’ 0
X X Z,
e Je: A |
rl ? r. b} .’ ] ?
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This is the equation of the system of two circles cutting
three given circles o, = 0, z,=0, , =0 at given angles.

2. We obtain, besides, the four groups of these circles
conformably to the rule of signs given in the Nouvelle Corre-
spondance Mathématique.

3. If A ,=A4,=A4,=11, we have the equation of the
-gystem of two circles touching internally or externally three
given circles.

4. If A, =A4,=A4,,=0, we obtain the equation of the
circle orthogonal to three given circles.

5. If the given circles reduce to three points, we obtain
the equation of the circumscribed circle.

6. If the circles become three straight lines, we obtain the
equation of the inscribed and escribed circles.

7. If, besides, 4, =4, =4, =0, we obtain the equation
of the double straight line at infinity.

8. Suppose now that the circle O, becomes the straight
line at infinity, we then have the formula
Ay Ay 4y 4,y

1 139

A A”’ A”, ‘A!I’
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A4, 4, 4,, 4,,

]
=)
-

1)

"l"‘wﬂlh‘uﬁl"-‘il'—'

‘Au’ ‘A Aa’ A«?
1 1 1 1

PR R B
1 2 ] 4
this is the equation giving the radii of the three circles which

cut three given straight lines or circles at given angles.

9. If 4,=4,=4,=41, we find again the formula
giving the radii of the system of circles touching three given
circles. (Bauer, Journal de Schlémilch, t. v.).

10. If A, =4, =A4,=0, we find the radius of the circle
orthogonal to three given circles.

427

11 If r,=r,=r,=1, we obtain the radius of the circle
circumscribing the triangle, given by the three points O,
0,, 0,, and consequently the area of the triangle.

diibpan,
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12. If r, =7 =7 =7 =1, we obtain the relation given by

Gayyl'z‘i between the distances of four points in a plane
(Cambridge Journal, t. 11.).

13. If the elements O, and O, become two straight lines
at infinity, we obtain the relation between the cosines of the
angles of three directions in a plane.

14, If the elements O, O,, O, represent the origin of the
coordinates and the two axes, O, any circle whatever, and O, a
point on this circle, we obtain the equation of the circle O, in
oblique coordinates.

15. If the element -O, is replaced by the straight line at
infinity, we obtain the radius of a circle with given centre,
which cuts at given angles the two axes of coordinates, &c.

These considerations are also applicable very easily to

space.
Paris, December, 1877.

MATHEMATICAL NOTES.

Proof of the Theorem in Kinematics, vol. VIL. p. 190.

Let P, P be two points on the moving plane, and (P), (P')
the areas described by them.

Let PP'=r, and let PP’ make N revolutions,

Let » be the total movement of P’ perpendicular to P'P.

Then (P) - (P') = nr + Nwr'.

Take P’ as origin and the direction of P'Pin which = is
a maximum (=7') as initial line.

Then n=mn'cosf. -

Thus (P) — (P') =n'r cos 0 + Nmr*,

the equation to a family of concentric circles.
Transform to centre, then
(P)= Nz (r*—a")
where a =radius of circle corresponding to (P)=0.
A. B. KEMPE.

Fluid Motion ¢n a Rotating Semicircular Cylinder.

It may be useful to put on record the solution of this
simple case of fluid motion. Take the centre of the semi- -
circfe as origin and one of the bounding radii as initial line.
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MATHEMATICAL NOTES.

On Long Successions of Composite Numbers.

Mr. Glaisher has given in the Messenger for November,
1877, and March, 1878, interesting results upon the sequences
of composite numbers in the natural series. To the explana-
tions given by the author, I add the following reflections
upon the appearance of sequences much earlier than the
theory, indicates.

Denote by N, =2n+ 1, any uneven number, by P(g) the
product of all the primes 2.5.5...9, ¢ being the greatest prime
inferior to », and by S, () the series of the N consecutive
numbers a:P(q) —n, zz’(q y ooP (g) +n.

If we suppose 1<a<n+1, the number zP(g)+a is
evidently composite, whatever integer value  may have.

Therefore, if 2P (¢) — 1 and 2P () + 1 are composite num-
bers, the series S, (z) will be formed of N composite numbers.
We have, for example, for z=1,

P(17)—1=61 x 8369, P(17) 4 1=19 x 97 x 277,
P(19) - 1=53 x 197 x 929, P(19)+ 1 =347 x 27953,
whence the series
510492, ... 510510,... 510528
contains 37 composite numbers, and the series
9699668, ... 9699690,... 9699712

contains 45 consecutive composite numbers.

Thus, again, the series S, (z) contains 21 composite
numbers for the values of x,
8, 15, 25, 26, 31, 33, 34, 37, 38, 45, 52, 54, 56, 58, 62, 71, 77,
79, 80, 82, 84, 91, 98, ....

In the general case, where ¢ is given, we determine = by
solving the two'simultaneous congruences

zP(9)=1 (modg) and 2P (g9)=- 1 (mod £),
g and % denoting the two primes that follow ¢.

Epouarp Lucas.
Paris, August, 1878.




